References
- [1]
- H. Ruan and W. Su. An approximation method to estimate the Hausdorff measure of the Sierpinski gasket. Anal. Theory Appl. 20, 158–166 (2004).
- [2]
- [3]
- A. Gibbs, D. P. Hewett and A. Moiola. Numerical evaluation of singular integrals on fractal sets. Numer. Alg. 92, 2071–2124 (2023).
- [4]
- B. Forte, F. Mendivil and E. R. Vrscay. ``Chaos games'' for iterated function systems with grey level maps. SIAM J. Math. Anal. 29, 878–890 (1998).
- [5]
- K. Falconer. Fractal geometry. Third Edition (John Wiley & Sons, Ltd., Chichester, 2014); p. xxx+368. Mathematical foundations and applications.
- [6]
- G. Mantica and S. Vaienti. The asymptotic behaviour of the Fourier transforms of orthogonal polynomials. I. Mellin transform techniques. Ann. Henri Poincaré 8, 265–300 (2007).
- [7]
- A. Gibbs, D. P. Hewett and B. Major. Numerical evaluation of singular integrals on non-disjoint self-similar fractal sets. Numer. Alg., doi.org/10.1007/s11075-023-01705-8 (2024).
- [8]
- A. M. Caetano, S. N. Chandler-Wilde, X. Claeys, A. Gibbs, D. P. Hewett and A. Moiola. Integral equation methods for acoustic scattering by fractals. Under review (2023).
- [9]
- A. M. Caetano, S. N. Chandler-Wilde, A. Gibbs, D. P. Hewett and A. Moiola. A Hausdorff-measure boundary element method for acoustic scattering by fractal screens. Numer. Math. 156, 463–532 (2024).